Dubins Path
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, the term Dubins path typically refers to the shortest curve that connects two points in the two-dimensional
Euclidean plane In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions of ...
(i.e. ''x-y'' plane) with a constraint on the
curvature In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonic ...
of the path and with prescribed initial and terminal
tangents In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More ...
to the path, and an assumption that the vehicle traveling the path can only travel forward. If the vehicle can also travel in reverse, then the path follows the Reeds–Shepp curve. In 1957, Lester Eli Dubins (1920–2010) proved using tools from analysis that any such path will consist of maximum curvature and/or straight line segments. In other words, the shortest path will be made by joining circular arcs of maximum curvature and straight lines. In 1974 Harold H. Johnson proved Dubins' result by applying
Pontryagin's maximum principle Pontryagin's maximum principle is used in optimal control theory to find the best possible control for taking a dynamical system from one state to another, especially in the presence of constraints for the state or input controls. It states that it ...
. In particular, Harold H. Johnson presented necessary and sufficient conditions for a plane curve, which has bounded piecewise continuous curvature and prescribed initial and terminal points and directions, to have minimal length. In 1992 the same result was shown again using
Pontryagin's maximum principle Pontryagin's maximum principle is used in optimal control theory to find the best possible control for taking a dynamical system from one state to another, especially in the presence of constraints for the state or input controls. It states that it ...
. More recently, a geometric curve-theoretic proof has been provided by J. Ayala, D. Kirszenblat and J. Hyam Rubinstein. A proof characterizing Dubins paths in homotopy classes has been given by J. Ayala. The Dubins path is commonly used in the fields of
robotics Robotics is an interdisciplinary branch of computer science and engineering. Robotics involves design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrat ...
and
control theory Control theory is a field of mathematics that deals with the control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a ...
as a way to plan paths for wheeled robots, airplanes and underwater vehicles. There are simple geometric and analytical methods to compute the optimal path. For example, in the case of a wheeled robot, a simple kinematic car model (also known as Dubins' car) for the systems is: \begin \dot x &= V \cos (\theta) \\ \dot y &= V \sin (\theta) \\ \dot \theta &= u \end where (x,y) is the car's position, \theta is the heading, the car is moving at a constant speed V , and the turn rate control u is bounded. In this case the maximum turning rate corresponds to some minimum
turning radius The turning diameter of a vehicle is the minimum diameter (or "width") of available space required for that vehicle to make a circular turn (i.e. U-turn). The term thus refers to a theoretical minimal circle in which for example an aeroplane, a ...
(and equivalently maximum curvature). The prescribed initial and terminal tangents correspond to initial and terminal
headings Heading can refer to: * Heading (metalworking), a process which incorporates the extruding and upsetting processes * Headline, text at the top of a newspaper article * Heading (navigation), the direction a person or vehicle is facing, usually si ...
. The Dubins' path gives the shortest path joining two oriented points that is feasible for the wheeled-robot model. The optimal path type can be described using an analogy with cars of making a 'right turn (R)' , 'left turn (L)' or driving 'straight (S).' An optimal path will always be at least one of the six types: RSR, RSL, LSR, LSL, RLR, LRL. For example, consider that for some given initial and final positions and tangents, the optimal path is shown to be of the type 'RSR.' Then this corresponds to a right-turn arc (R) followed by a straight line segment (S) followed by another right-turn arc (R). Moving along each segment in this sequence for the appropriate length will form the shortest curve that joins a starting point A to a terminal point B with the desired tangents at each endpoint and that does not exceed the given curvature. File:Dubins1.svg, An RSL Dubins path File:Dubins2.svg, An RSR Dubins path File:Dubins3.svg, An LRL Dubins path


Dubins Interval Problem

Dubins interval problem is a key variant of the Dubins path problem, where an interval of heading directions are specified at the initial and terminal points. The tangent direction of the path at initial and final points are constrained to lie within the specified intervals. One could solve this using geometrical analysis, or using Pontryagin's minimum principle.


References

{{reflist


External links


Dubins Curves
from Planning Algorithms by Steven M. LaValle
Isochrons for a Dubins Car
a demonstration from
Wolfram Demonstrations Project The Wolfram Demonstrations Project is an organized, open-source collection of small (or medium-size) interactive programs called Demonstrations, which are meant to visually and interactively represent ideas from a range of fields. It is hos ...
Piecewise-circular curves Automated planning and scheduling Robot kinematics